
Chapter 8

Iterators

Concepts:
. Iterators
. The AbstractIterator class
. Vector iterators
. Numeric iteration

One potato, two potato, three potato, four,
five potato, six potato, seven potato, more.

—A child’s iterator

PROGRAMS MOVE FROM ONE STATE TO ANOTHER. As we have seen, this “state” Ah! Interstate
programs!is composed of the current value of user variables as well as some notion of

“where” the computer is executing the program. This chapter discusses enumer-
ations and iterators—objects that hide the complexities of maintaining the state
of a traversal of a data structure.

Consider a program that prints each of the values in a list. It is important
to maintain enough information to know exactly “where we are” at all times.
This might correspond to a reference to the current value. In other structures
it may be less clear how the state of a traversal is maintained. Iterators help us
hide these complexities. The careful design of these control structures involves,
as always, the development of a useful interface that avoids compromising the
iterator’s implementation or harming the object it traverses.

8.1 Java’s Enumeration Interface

Java defines an interface called an Enumeration that provides the user indirect,
iterative access to each of the elements of an associated data structure, exactly
once. The Enumeration is returned as the result of calling the elements method
of various container classes. Every Enumeration provides two methods:

Enumeration

public interface java.util.Enumeration

{

public abstract boolean hasMoreElements();

// post: returns true iff enumeration has outstanding elements

public abstract java.lang.Object nextElement();

// pre: hasMoreElements

// post: returns the next element to be visited in the traversal

}



162 Iterators

The hasMoreElements method returns true if there are unvisited elements of
the associated structure. When hasMoreElements returns false, the traversal
is finished and the Enumeration expires. To access an element of the under-
lying structure, nextElement must be called. This method does two things:
it returns a reference to the current element and then marks it visited. Typi-
cally hasMoreElements is the predicate of a while loop whose body processes
a single element using nextElement. Clearly, hasMoreElements is an impor-
tant method, as it provides a test to see if the precondition for the nextElement

method is met.
The following code prints out a catchy phrase using a Vector enumeration:

HelloWorld

public static void main(String args[])

{

// construct a vector containing two strings:

Vector<String> v = new Vector<String>();

v.add("Hello");

v.add("world!");

// construct an enumeration to view values of v

Enumeration i = (Enumeration)v.elements();

while (i.hasMoreElements())

{

// SILLY: v.add(1,"silly");

System.out.print(i.nextElement()+" ");

}

System.out.println();

}

When run, the following immortal words are printed:

Hello world!

There are some important caveats that come with the use of Java’s Enumera-

tion construct. First, it is important to avoid modifying the associated structure
while the Enumeration is active or live. Uncommenting the line marked SILLY

causes the following infinite output to begin:

Hello silly silly silly silly silly silly

Inserting the string "silly" as the new second element of the Vector causes itA silly virus
vector! to expand each iteration of the loop, making it difficult for the Enumeration to

detect the end of the Vector.

Principle 9 Never modify a data structure while an associated Enumeration isN

NW

SW
SE

NE

W

S

E live.

Modifying the structure behind an Enumeration can lead to unpredictable re-
sults. Clearly, if the designer has done a good job, the implementations of both



8.2 The Iterator Interface 163

the Enumeration and its associated structure are hidden. Making assumptions
about their interaction can be dangerous.

Another subtle aspect of Enumerations is that they do not guarantee a par-
ticular traversal order. All that is known is that each element will be visited
exactly once before hasMoreElements becomes false. While we assume that
our first example above will print out Hello world!, the opposite order may
also be possible.

Presently, we develop the concept of an iterator.

8.2 The Iterator Interface

An Iterator is similar to an Enumerator except that the Iterator traverses
an associated data structure in a predictable order. Since this is a behavior and
not necessarily a characteristic of its interface, it cannot be controlled or verified
by a Java compiler. Instead, we must assume that developers of Iterators
will implement and document their structures in a manner consistent with the
following interface:

Iterator

public interface java.util.Iterator

{

public abstract boolean hasNext();

// post: returns true if there is at least one more value to visit

public abstract java.lang.Object next();

// pre: hasNext()

// post: returns the next value to be visited

}

While the Iterator is a feature built into the Java language, we will choose to
implement our own AbstractIterator class.

Abstract-

Iterator

public abstract class AbstractIterator<E>

implements Enumeration<E>, Iterator<E>, Iterable<E>

{

public abstract void reset();

// pre: iterator may be initialized or even amid-traversal

// post: reset iterator to the beginning of the structure

public abstract boolean hasNext();

// post: true iff the iterator has more elements to visit

public abstract E get();

// pre: there are more elements to be considered; hasNext()

// post: returns current value; ie. value next() will return

public abstract E next();

// pre: hasNext()

// post: returns current value, and then increments iterator



164 Iterators

public void remove()

// pre: hasNext() is true and get() has not been called

// post: the value has been removed from the structure

{

Assert.fail("Remove not implemented.");

}

final public boolean hasMoreElements()

// post: returns true iff there are more elements

{

return hasNext();

}

final public E nextElement()

// pre: hasNext()

// post: returns the current value and "increments" the iterator

{

return next();

}

final public Iterator<E> iterator()

// post: returns this iterator as a subject for a for-loop

{

return this;

}

}

This abstract base class not only meets the Iterator interface, but also im-
plements the Enumeration interface by recasting the Enumeration methods in
terms of Iterator methods. We also provide some important methods that are
not part of general Iterators: reset and get. The reset method reinitializes
the AbstractIterator for another traversal. The ability to traverse a structure
multiple times can be useful when an algorithm makes multiple passes through
a structure to perform a single logical operation. The same functionality can be
achieved by constructing a new AbstractIterator between passes. The get

method of the AbstractIterator retrieves a reference to the current element of
the traversal. The same reference will be returned by the call to next. Unlike
next, however, get does not push the traversal forward. This is useful when
the current value of an AbstractIterator is needed at a point logically distant
from the call to next.

The use of an AbstractIterator leads to the following idiomatic loop for
traversing a structure:

HelloWorld

public static void main(String args[])

{

// construct a vector containing two strings:



8.3 Example: Vector Iterators 165

Vector<String> v = new Vector<String>();

AbstractIterator<String> i;

v.add("Hello");

v.add("world!");

// construct an iterator to view values of v

for (i = (AbstractIterator<String>)v.iterator(); i.hasNext(); i.next())

{

System.out.print(i.get()+" ");

}

System.out.println();

}

The result is the expected Hello world!
In Java 5 any type that has a method iterator that returns an Iterator<T>

for traversing an object meets the requirements of the Iterable<T> interface.
These classes can make use of a new form of the for loop that simplifies the
previous idiom to:

Vector<String> v = new Vector<String>();

...

for (String word : v)

{

System.out.print(word+" ");

}

System.out.println();

We will see this form of for loop used on many structure classes.

8.3 Example: Vector Iterators

For our first example, we design an Iterator to traverse a Vector called, not
surprisingly, a VectorIterator. We do not expect the user to construct Vector-
Iterators directly—instead the Vector hides the construction and returns the
new structure as a generic Iterator, as was seen in the HelloWorld example.

Vector

Here is the iterator method:

public Iterator<E> iterator()

// post: returns an iterator allowing one to

// view elements of vector

{

return new VectorIterator<E>(this);

}

When a Vector constructs an Iterator, it provides a reference to itself (this)
as a parameter. This reference is used by the VectorIterator to recall which
Vector it is traversing.

We now consider the interface for a VectorIterator:

Vector-

Iterator



166 Iterators

class VectorIterator<E> extends AbstractIterator<E>

{

public VectorIterator(Vector<E> v)

// post: constructs an initialized iterator associated with v

public void reset()

// post: the iterator is reset to the beginning of the traversal

public boolean hasNext()

// post: returns true if there is more structure to be traversed

public E get()

// pre: traversal has more elements

// post: returns the current value referenced by the iterator

public E next()

// pre: traversal has more elements

// post: increments the iterated traversal

}

As is usually the case, the nonconstructor methods of VectorIterator exactly
match those required by the Iterator interface. Here is how the VectorIter-

ator is constructed and initialized:

protected Vector<E> theVector;

protected int current;

public VectorIterator(Vector<E> v)

// post: constructs an initialized iterator associated with v

{

theVector = v;

reset();

}

public void reset()

// post: the iterator is reset to the beginning of the traversal

{

current = 0;

}

The constructor saves a reference to the associated Vector and calls reset. This
logically attaches the Iterator to the Vector and makes the first element (if
one exists) current. Calling the reset method allows us to place all the resetting
code in one location.

To see if the traversal is finished, we invoke hasNext:

public boolean hasNext()

// post: returns true if there is more structure to be traversed

{

return current < theVector.size();

}



8.4 Example: Rethinking Generators 167

This routine simply checks to see if the current index is valid. If the index is less
than the size of the Vector, then it can be used to retrieve a current element
from the Vector. The two value-returning methods are get and next:

public E get()

// pre: traversal has more elements

// post: returns the current value referenced by the iterator

{

return theVector.get(current);

}

public E next()

// pre: traversal has more elements

// post: increments the iterated traversal

{

return theVector.get(current++);

}

The get method simply returns the current element. It may be called arbitrarily
many times without pushing the traversal along. The next method, on the other
hand, returns the same reference, but only after having incremented current.
The next value in the Vector (again, if there is one) becomes the current value.

Since all the Iterator methods have been implemented, Java will allow a
VectorIterator to be used anywhere an Iterator is required. In particular, it
can now be returned from the iterator method of the Vector class.

Observe that while the user cannot directly construct a VectorIterator (it
is a nonpublic class), the Vector can construct one on the user’s behalf. This
allows measured control over the agents that access data within the Vector.
Also, an Iterator is a Java interface. It is not possible to directly construct an
Iterator. We can, however, construct any class that implements the Iterator

interface and use that as we would any instance of an Iterator.
Since an AbstractIterator implements the Enumeration interface, we may

use the value returned by Vector’s iterator method as an Enumeration to
access the data contained within the Vector. Of course, treating the Vector-

Iterator as an Enumeration makes it difficult to call the AbstractIterator

methods reset and get.

8.4 Example: Rethinking Generators

In Section 7.2 we discussed the construction of a class of objects that gener-
ated numeric values. These Generator objects are very similar to Abstract-

Iterators—they have next, get, and reset methods. They lack, however, a
hasNext method, mainly because of a lack of foresight, and because many se-
quences of integers are infinite—their hasNext would, essentially, always return
true.

Generators are different from Iterators in another important way: Gen-

erators return the int type, while Iterators return Objects. Because of this,



168 Iterators

the Iterator interface is more general. Any Object, including Integer values,
may be returned from an Iterator.

In this section we experiment with the construction of a numeric iterator—a
Generator-like class that meets the Iterator interface. In particular, we are
interested in constructing an Iterator that generates prime factors of a specific
integer. The PFIterator accepts the integer to be factored as the sole parameter
on the constructor:

PFGenerator

import structure5.AbstractIterator;

public class PFGenerator extends AbstractIterator<Integer>

{

// the original number to be factored

protected int base;

public PFGenerator(int value)

// post: an iterator is constructed that factors numbers

{

base = value;

reset();

}

}

The process of determining the prime factor involves reducing the number by a
factor. Initially, the factor f starts at 2. It remains 2 as long as the reduced value
is even. At that point, all the prime factors of 2 have been determined, and we
next try 3. This process continues until the reduced value becomes 1.

Because we reduce the number at each step, we must keep a copy of the
original value to support the reset method. When the iterator is reset, the
original number is restored, and the current prime factor is set to 2.

// base, reduced by the prime factors discovered

protected int n;

// the current prime factor

protected int f;

public void reset()

// post: the iterator is reset to factoring the original value

{

n = base;

// initial guess at prime factor

f = 2;

}

If, at any point, the number n has not been reduced to 1, prime factors
remain undiscovered. When we need to find the current prime factor, we first
check to see if f divides n—if it does, then f is a factor. If it does not, we simply
increase f until it divides n. The next method is responsible for reducing n by a
factor of f.



8.4 Example: Rethinking Generators 169

public boolean hasNext()

// post: returns true iff there are more prime factors to be considered

{

return f <= n; // there is a factor <= n

}

public Integer next()

// post: returns the current prime factor and "increments" the iterator

{

Integer result = get(); // factor to return

n /= f; // reduce n by factor

return result;

}

public Integer get()

// pre: hasNext()

// post: returns the current prime factor

{

// make sure f is a factor of n

while (f <= n && n%f != 0) f++;

return f;

}

We can now write a program that uses the iterator to print out the prime
factors of the values presented on the command line of the Java program as it
is run:

public static void main(String[]args)

{

// for each of the command line arguments

for (int i = 0; i < args.length; i++)

{

// determine the value

int n = Integer.parseInt(args[i]);

PFGenerator g = new PFGenerator(n);

System.out.print(n+": ");

// and print the prime factors of n

while (g.hasNext()) System.out.print(g.next()+" ");

System.out.println();

}

}

For those programmers that prefer to use the hasMoreElements and next-

Element methods of the Enumeration interface, those methods are automat-
ically provided by the AbstractIterator base class, which PFGenerator ex-
tends.

Exercise 8.1 The 3n + 1 sequence is computed in the following manner. Given a
seed n, the next element of the sequence is 3n + 1 if n is odd, or n/2 if n is even.
This sequence of values stops whenever a 1 is encountered; this happens for all



170 Iterators

seeds ever tested. Write an Iterator that, given a seed, generates the sequence of
values that ends with 1.

8.5 Example: Filtering Iterators

We now consider the construction of a filtering iterator. Instead of traversing
structures, a filtering iterator traverses another iterator! As an example, we
construct an iterator that returns the unique values of a structure.

Before we consider the implementation, we demonstrate its use with a sim-
ple example. In the following code, suppose that data is a Vector of Strings,
some of which may be duplicates. For example, the Vector could represent the
text of the Gettysburg Address. The iterator method of data is used to con-
struct a VectorIterator. This is, in turn, used as a parameter to the construc-
tion of a UniqueFilter. Once constructed, the filter can be used as a standard
Iterator, but it only returns the first instance of each String appearing in the
Vector:

UniqueFilter

Vector<String> data = new Vector<String>(1000);

...

AbstractIterator<String> dataIterator =

(AbstractIterator<String>)data.iterator();

AbstractIterator<String> ui = new UniqueFilter(dataIterator);

int count=0;

for (ui.reset(); ui.hasNext(); ui.next())

{

System.out.print(ui.get()+" ");

if (++count%7==0) System.out.println();

}

System.out.println();

The result of the program, when run on the Gettysburg Address, is the follow-
ing output, which helps increase the vocabulary of this textbook by nearly 139
words:

four score and seven years ago our

fathers brought forth on this continent a

new nation conceived in liberty dedicated to

the proposition that all men are created

equal now we engaged great civil war

testing whether or any so can long

endure met battlefield of have come dedicate

portion field as final resting place for

those who here gave their lives might

live it is altogether fitting proper should

do but larger sense cannot consecrate hallow

ground brave living dead struggled consecrated far



8.5 Example: Filtering Iterators 171

above poor power add detract world will

little note nor remember what say itcan

never forget they did us rather be

unfinished work which fought thus nobly advanced

task remaining before from these honored take

increased devotion cause last full measure highly

resolve shall not died vain under God

birth freedom government people by perish earth

Fans of compact writing will find this unique.
The UniqueFilter provides the same interface as other iterators. Its con-

structor, however, takes a “base” Iterator as its parameter:

protected AbstractIterator<T> base; // slave iterator

protected List<T> observed; // list of previous values

public UniqueFilter(AbstractIterator<T> baseIterator)

// pre: baseIterator is a non-null iterator

// post: constructs unique-value filter

// host iterator is reset

{

base = baseIterator;

reset();

}

public void reset()

// post: master and base iterators are reset

{

base.reset();

observed = new SinglyLinkedList<T>();

}

When the filter is reset using the reset method, the base iterator is reset as
well. We then construct an empty List of words previously observed. As the
filter progresses, words encountered are incorporated into the observed list.

The current value is fetched by the get method. It just passes the request
along to the base iterator. A similar technique is used with the hasNext method:

public boolean hasNext()

// post: returns true if there are more values available

// from base stream

{

return base.hasNext();

}

public T get()

// pre: traversal has more elements

// post: returns the current value referenced by the iterator

{



172 Iterators

return base.get();

}

Finally, the substance of the iterator is found in the remaining method, next:

public T next()

// pre: traversal has more elements

// post: returns current value and increments the iterator

{

T current = base.next();

// record observation of current value

observed.add(current);

// now seek next new value

while (base.hasNext())

{

T possible = base.get();

if (!observed.contains(possible))

{ // new value found! leave

break;

} else {

// old value, continue

base.next();

}

}

return current;

}

Because this routine can only be called if there is a current value, we record the
current value in the observed list. The method then increments the base iterator
until a new, previously unobserved value is produced, or the base iterator runs
dry.

Some subtle details are worth noting here. First, while we have used a
VectorIterator on a Vector of Strings, the UniqueFilter can be applied, as
is, to any type of iterator and can deliver any type of value. All that is required
is that the base type support the equals method. Secondly, as the filter iterator
progresses, it forces the base iterator to progress, too. Because of this, two filters
are usually not applied to the same base iterator, and the base iterator should
never be modified while the filter is running.

8.6 Conclusions

We have seen that data structures can sometimes be used to control the way
programs focus on and access data. This is made very explicit with Java’s
Enumeration construct that facilitates visiting all the elements of a structure.

When we wish to traverse the elements of a data structure in a predeter-
mined order, we use an Iterator. The Iterator provides access to the ele-
ments of a structure using an interface that is similar to that of an Enumeration.



8.6 Conclusions 173

The abstract base class AbstractIterator implements both the Iterator and
Enumeration interfaces, and provides two new methods—get and reset—as
well. We have also seen that there are weaknesses in the concept of both of
these constructs, because they surrender some of the data hiding and access
controls that are provided by the associated structure. Careful use of these con-
trolling structures, however, can yield useful tools to make traversal of struc-
tures simpler.

Self Check Problems

Solutions to these problems begin on page 445.

8.1 Suppose e is an Enumeration over some data structure. Write a loop
using e to print all the values of the data structure.

8.2 Suppose i is an Iterator over some data structure. Write a loop using
i to print all the values of the data structure.

8.3 Suppose that v is a Vector of Integer values. Write a loop that will use
an Iterator to print those Integer values that are even.

8.4 It is possible to write down the integers 1 through 15 in an order such
that each adjacent pair of integers sums to a perfect square. Write a loop that
prints Perfect! only if the adjacent Integer values generated by the Iterator

g sum to perfect squares. (You needn’t verify the number or range of values.)

Problems

Solutions to the odd-numbered problems begin on page 467.

8.1 Since the get method is available to the AbstractIterator, the next

method does not appear to need to return a value. Why does our implementa-
tion return the value?

8.2 Write an Iterator that works on Strings. Each value returned should
be an object of type Character.

8.3 Write an Iterator that returns a stream of Integers that are prime.
How close is it to the Generator implementation of Section 7.2?

8.4 Write a filtering iterator, ReverseIterator, that reverses the stream of
values produced by another Iterator. You may assume that the base Iterator

will eventually have no more elements, but you may not bound the number.

8.5 Write a filtering iterator, OrderedIterator, that sorts the stream of
values produced by another Iterator. You may assume that the base Iterator

will eventually have no more elements, but you may not bound the number.

8.6 Write a filtering iterator, ShuffleIterator, that shuffles the stream of
values produced by another Iterator. You may assume that the base Iterator

will eventually have no more elements, but you may not bound the number.



174 Iterators

8.7 Write a filtering iterator that takes a base iterator and an Object (called
predicate) with a static select method defined. This iterator passes along
only those values that generate true when passed to the select method of the
predicate Object.



8.7 Laboratory: The Two-Towers Problem

Objective. To investigate a difficult problem using Iterators.

Discussion. Suppose that we are given n uniquely sized cubic blocks and that
each block has a face area between 1 and n. Build two towers by stacking these
blocks. How close can we get the heights of the two towers? The following
two towers built by stacking 15 blocks, for example, differ in height by only 129
millions of an inch (each unit is one-tenth of an inch):

1

5

14

10

9

7

6

4

15

13

12

11

8
3

2

Still, this stacking is only the second-best solution! To find the best stacking, we
could consider all the possible configurations.

We do know one thing: the total height of the two towers is computed by
summing the heights of all the blocks:

h =
n∑

i=1

√
i

If we consider all the subsets of the n blocks, we can think of the subset as the
set of blocks that make up, say, the left tower. We need only keep track of that
subset that comes closest to h/2 without exceeding it.

In this lab, we will represent a set of n distinct objects by a Vector, and we
will construct an Iterator that returns each of the 2n subsets.

Procedure. The trick to understanding how to generate a subset of n values
from a Vector is to first consider how to generate a subset of indices of elements
from 0 to n − 1. Once this simpler problem is solved, we can use the indices to
help us build a Vector (or subset) of values identified by the indices.

There are exactly 2n subsets of values 0 to n−1. We can see this by imagining
that a coin is tossed n times—once for each value—and the value is added to
the subset if the coin flip shows a head. Since there are 2 × 2 × · · · × 2 = 2n

different sequences of coin tosses, there are 2n different sets.
We can also think of the coin tosses as determining the place values for n

different digits in a binary number. The 2n different sequences generate binary
numbers in the range 0 through 2n − 1. Given this, we can see a line of attack:



176 Iterators

count from 0 to 2n−1 and use the binary digits (bits) of the number to determine
which of the original values of the Vector are to be included in a subset.

Computer scientists work with binary numbers frequently, so there are a
number of useful things to remember:

• An int type is represented by 32 bits. A long is represented by 64 bits. For
maximum flexibility, it would be useful to use long integers to represent
sets of up to 64 elements.

• The arithmetic shift operator (<<) can be used to quickly compute powers
of 2. The value 2i can be computed by shifting a unit bit (1) i places to the
left. In Java we write this 1<<i. This works only for nonnegative, integral
powers. (For long integers, use 1L<<i.)

• The bitwise and of two integers can be used to determine the value of
a single bit in a number’s binary representation. To retrieve bit i of an
integer m we need only compute m & (1<<i).

Armed with this information, the process of generating subsets is fairly straight-
forward. One line of attack is the following:

1. Construct a new extension to the AbstractIterator class. (By extending
the AbstractIterator we support both the Iterator and Enumeration

interfaces.) This new class should have a constructor that takes a Vector

as its sole argument. Subsets of this Vector will be returned as the
Iterator progresses.

2. Internally, a long value is used to represent the current subset. This value
increases from 0 (the empty set) to 2n − 1 (the entire set of values) as the
Iterator progresses. Write a reset method that resets the subset counter
to 0.

3. Write a hasNext method that returns true if the current value is a reason-
able representation of a subset.

4. Write a get method that returns a new Vector of values that are part of
the current subset. If bit i of the current counter is 1, element i of the
Vector is included in the resulting subset Vector.

5. Write a next method. Remember it returns the current subset before in-
crementing the counter.

6. For an Iterator you would normally have to write a remove method. If
you extend the AbstractIterator class, this method is provided and will
do nothing (this is reasonable).

You can now test your new SubsetIterator by having it print all the subsets
of a Vector of values. Remember to keep the Vector small. If the original values
are all distinct, the subsets should all have different values.



8.7 Laboratory: The Two-Towers Problem 177

To solve the two-towers problem, write a main method that inserts the values√
1,

√
2,. . . ,

√
n as Double objects into a Vector. A SubsetIterator is then

used to construct 2n subsets of these values. The values of each subset are
summed, and the sum that comes closest to, but does not exceed, the value
h/2 is remembered. After all the subsets have been considered, print the best
solution.

Thought Questions. Consider the following questions as you complete the lab:

1. What is the best solution to the 15-block problem?

2. This method of exhaustively checking the subsets of blocks will not work
for very large problems. Consider, for example, the problem with 50
blocks: there are 250 different subsets. One approach is to repeatedly
pick and evaluate random subsets of blocks (stop the computation after
1 second of elapsed time, printing the best subset found). How would you
implement randomSubset, a new SubsetIterator method that returns a
random subset?

Notes:


